Pi

 

Does the sequence of digits in
pi=3.1415926535897932384626433832795028841971693993751058209749445923078\ 164062862089986280348253421170679821480865132823066470938446095505822317\ 253594081284811174502841027019385211055596446229489549303819644288109756\ 659334461284756482337867831652712019091456485669234603486104543266482133\ 936072602491412737245870066063155881748815209209628292540917153643678925\ 903600113305305488204665213841469519415116094330572703657595919530921861\ 173819326117931051185480744623799627495673518857527248912279381830119491\ 298336733624406566430860213949463952247371907021798609437027705392171762\ 931767523846748184676694051320005681271452635608277857713427577896091736\ 371787214684409012249534301465495853710507922796892589235420199561121290\ 219608640344181598136297747713099605187072113499999983729780499510597317\ 328160963185950244594553469083026425223082533446850352619311881710100031\ 378387528865875332083814206171776691473035982534904287554687311595628638\ 8235378759375195778185778053217122680661300192787661119590921642019893...
behave like a random sequence? You see here the number pi displayed in the '52-imal system', where each of the 52 cards of a deck represents a number (instead of (0,1, ... , 9) in the decimal system or (0,1, ... 9,a,b,c,d,e,f) in the hexadecimal system. Does every card appear with the same frequency? One thinks that the answer is yes and that PI is a 'normal number'. But nobody knows ...
Literature: David Blatner, The joy of PI, Walker and Company, New York
© Mathematik.com, 1999

Ѻ˹áྨԡҪ