# MyPhysicsLab – Double Spring

This simulation shows two springs and masses connected to a wall. If you've ever played with an oscilloscope you've probably seen curves like these. They are called Lissajous curves and are generated by simple sine and cosine functions.
You can change parameters in the simulation such as mass or spring stiffness. You can drag either mass with your mouse to set the starting position. Scroll down to see the math!

คลิกเข้าไปทดลอง  คลิกค่ะ

## Physics and Equations of Motion

The two springs act independently, so it is easy to figure out what are the forces acting on the two blocks.  Label the springs and blocks as follows: wall - spring1 - block1 - spring2 - block2 We'll assume the origin is at the connection of the spring to the wall.  Define the following variables (subscripts refer to block 1 or block 2):

• x1, x2 = position (left edge) of blocks

• v1, v2 = velocity of blocks

• F1, F2 = force experienced by blocks

• L1, L2 = how much spring is stretched

And define the following constants:

• m1, m2 = mass of blocks

• w1, w2 = width of blocks

• k1, k2 = spring constants

• R1, R2 = rest length of springs

The springs exert force based on their amount of stretch according to F = −k × stretch The forces on the blocks are therefore F1 = −k1 L1 + k2 L2
F2 = −k2 L2
The stretch of the spring is calculated based on the position of the blocks. L1 = x1R1
L2 = x2x1w1R2
Now using Newton's law F = m a and the definition of acceleration as a = x'' we can write two second order differential equations. These are the equations of motion for the double spring.

m1 x1'' = −k1 (x1R1) + k2 (x2x1w1R2)
m2 x2'' = −k2 (x2x1w1R2)

## Numerical Solution

It's easy to convert the above second order equations to a set of first order equations. We define variables for the velocities v1, v2. Then there are four variables x1, x2, v1, v2 and a first-order differential equation for each: x1' = v1
x2' = v2
v1' = −(k1m1) (x1R1) + (k2m1) (x2x1w1R2)
v2' = −(k2m2) (x2x1w1R2)
This is the form that we need in order to use the Runge-Kutta method for numerically solving the differential equation.

# MyPhysicsLab – Physics Simulation with Java

Click on one of the physics simulations below... you'll see them animating in real time, and be able to interact with them by dragging objects or changing parameters like gravity. Get Java software if you don't already have it.
 single spring double spring pendulum chaotic pendulum double pendulum 2D spring double 2D spring colliding blocks cart with pendulum dangling stick rigid bodycollisions sumo wrestlinggame roller coaster roller coasterwith spring roller coasterwith 2 balls roller coasterwith flight molecule 2 molecule 3 molecule 4 molecule 5 molecule 6

ศัพท์วิทยาศาสตร์ ฉบับราชบัณฑิตสถาน

A  B  D  F  G  H  I  J  K  L  M  N  O  Q  R  S  T  U  V  W  X  Y

ถ                                       อ

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 หมวด : ก | ข | ค | ซ | ฐ | ด | ต | ท | น | ป | ผ | พ | ฟ | ภ | ม | ย | ร | ล | ว | ศ | ส | ห | อ | ฮ |

พจนานุกรมเสียง 1   แมว    วัว 1    วัว 2    วัว 3    เหมียว   แกะ     พจนานุกรมภาพการ์ตูน

 การเรียนการสอนฟิสิกส์ 1  ผ่านทางอินเตอร์เน็ต 1. การวัด 2. เวกเตอร์ 9.  การหมุน 12. ความยืดหยุ่น 17.  คลื่น การเรียนการสอนฟิสิกส์ 2  ผ่านทางอินเตอร์เน็ต 10. ทรานซิสเตอร์ 16. นิวเคลียร์

ครั้งที่

ภาพประจำสัปดาห์