เส้นแรงไฟฟ้า

ประจุไฟฟ้าและเส้นแรงไฟฟ้า

     ประจุไฟฟ้ามีทั้งประจุบวกและประจุลบ
โดยเส้นแรงไฟฟ้าของประจุบวกจะพุ่งออก
และของประจุลบจะพุ่งเข้าหา แสดงดังรูป
ด้านบน  ในที่ที่มีเส้นแรงไฟฟ้าเราเรียกว่ามี
สนามไฟฟ้า
     ทิศทางของเส้นแรงไฟฟ้าคือทิศทางของ
สนามไฟฟ้าที่จุดนั้นๆ


เส้นแรงแม่เหล็ก

เส้นแรงแม่เหล็กของแท่งแม่เหล็ก

     เมื่อนำกระดาษแข็งวางบนแท่งแม่เหล็ก
โรยเศษผงเหล็กละเอียดบนกระดาษแล้วค่อยๆ
เคาะด้วยนิ้วเบาๆ ผงเหล็กจะเรียงตัวตามเส้น
แรงแม่เหล็กจากขั้ว N ไปขั้ว S อย่างสวยงาม
ดังรูปด้านบน  โดยในที่ที่มีเส้นแรงแม่เหล็ก
เราเรียกว่ามี สนามแม่เหล็ก

เส้นแรงแม่เหล็กรอบตัวนำ

    รูปด้านบนแสดงเส้นแรงแม่เหล็กที่เกิดขึ้น
รอบตัวนำที่มีกระแสไฟฟ้าไหลผ่าน   ซึ่งมี
ลักษณะเป็นรูปวงกลม  โดยเส้นแรงแม่เหล็ก
มีทิศทางไปในทิศของการขันสกรูเกลียวขวา
เมื่อกระแสมีทิศทางพุ่งเข้าและจะไปในทิศ
การขันสกรูเกลียวซ้ายเมื่อกระแสพุ่งออก


 

   

 

 
                           
                           
 
         สนามไฟฟ้าและสนามแม่เหล็ก (Electric and Magnetic Field: EMFs) จะหมายถึง
เส้นสมมุติที่เขียนขึ้นเพื่อแสดงอาณาเขตและความเข้มของเส้นแรงที่เกิดขึ้นระหว่างวัตถุที่มี
ความแตกต่างของศักย์ไฟฟ้าหรือแรงดันไฟฟ้า (เรียกว่า สนามไฟฟ้า) และที่เกิดขึ้นโดยรอบ
วัตถุที่มีกระแสไฟฟ้าไหล (เรียกว่า สนามแม่เหล็ก) ในกรณีกล่าวถึงทั้ง สนามไฟฟ้าและ
สนามแม่เหล็กพร้อมกันมักจะเรียกรวมว่า สนามแม่เหล็กไฟฟ้า (Electromagnetic Field: EMF)
หรือ คลื่นแม่เหล็กไฟฟ้า สนามไฟฟ้าและสนามแม่เหล็กสามารถเกิดขึ้นได้ 2 ลักษณะคือ

1) เกิดขึ้นเองตามธรรมชาติ ได้แก่ สนามแม่เหล็กโลก
     คลื่นรังสีจากแสงอาทิตย์   คลื่นฟ้าผ่า  คลื่นรังสีแกมมา
     เป็นต้น

2) เกิดขึ้นจากการสร้างของมนุษย์   แบ่งออกได้เป็น
     2 ชนิด คือ

สนามแม่เหล็กโลกและปรากฏการณ์
ฟ้าผ่าจากสนามไฟฟ้า
   

- แบบจงใจ  คือสนามแม่เหล็กไฟฟ้าที่จงใจ
สร้างให้เกิดขึ้นโดยมีวัตถุประสงค์หลักที่จะใช้
ประโยชน์โดยตรงจากคลื่นสนามแม่เหล็กไฟฟ้า
ที่สร้างขึ้นนี้ เช่น ให้สามารถส่งไปได้ในระยะ
ไกลๆ ด้วยการส่งสัญญาณของระบบสื่อสาร
สัญญาณเรดาร์  คลื่นโทรศัพท์  คลื่นโทรทัศน์
และ คลื่นวิทยุ และการใช้คลื่นไมโครเวฟ
ในการให้ความร้อน เป็นต้น

 

- แบบไม่จงใจ  คือสนามแม่เหล็กไฟฟ้า
ที่เกิดจากการใช้งานอุปกรณ์  โดยไม่ได้มี
วัตถุประสงค์หลักที่จะใช้ประโยชน์
โดยตรงจากสนามแม่เหล็กไฟฟ้าที่เกิดขึ้น
เช่น ระบบส่งจ่ายกำลังไฟฟ้า (สายส่งไฟฟ้า)
รวมถึงอุปกรณ์เครื่องใช้ไฟฟ้า เป็นต้น

 

         สนามแม่เหล็กไฟฟ้ายังสามารถแบ่ง
ออกเป็น     สนามแม่เหล็กไฟฟ้าสถิต
ที่ไม่มีการเปลี่ยนตามเวลา (Static Field หรือ
DC Field) ตัวอย่างเช่น  สนามไฟฟ้าระหว่าง
ก้อนเมฆกับพื้นโลก    สนามแม่เหล็กจาก 
แม่เหล็กถาวร  สนามแม่เหล็กโลก เป็นต้น

   
           
 
 

สนามแม่เหล็กที่เกิดขึ้น
รอบแท่งแม่เหล็กถาวร

 

สนามไฟฟ้าระหว่าง
ก้อนเมฆกับพื้นโลก

 
          ส่วนอีกประเภทคือสนามแม่เหล็กไฟฟ้าที่มีการเปลี่ยนตามเวลา (Dynamic Field หรือ
AC Field) ตัวอย่างเช่น สนามแม่เหล็กไฟฟ้าที่เกิดจากระบบการส่งจ่ายกำลังไฟฟ้ากระแสสลับ
(50 Hz) และ ระบบสื่อสาร เป็นต้น

 

         สนามแม่เหล็กไฟฟ้าที่เกิดจากระบบการส่งจ่ายกำลังไฟฟ้า
เป็นเพียงส่วนหนึ่งของแถบคลื่นความถี่ของคลื่นแม่เหล็กไฟฟ้า
(Electromagnetic Spectrum) ซึ่งแถบคลื่นความถี่นี้จะเป็นตัวบอกถึง
ระดับพลังงานของคลื่นแม่เหล็กไฟฟ้า (Electromagnetic Energy
หรือ Photon Energy) โดยคลื่นแม่เหล็กไฟฟ้าที่มีความถี่สูงจะมี
ระดับของพลังงานสูง และ คลื่นแม่เหล็กไฟฟ้าที่มีความถี่ต่ำก็จะมี
ระดับของพลังงานที่ต่ำ

         แถบคลื่นความถี่ของคลื่นแม่เหล็กไฟฟ้าเรียงลำดับความถี่
จากสูงไปสู่ต่ำ เป็นดังนี้   รังสีคอสมิก   รังสีแกมมา    รังสีเอ็กซ์
แสงอาทิตย์  คลื่นความร้อน   คลื่นไมโครเวฟ    คลื่นวิทยุ   และ สนามแม่เหล็กที่เกิดจากกระแสไฟฟ้า ดังแสดงในรูป

         อย่างไรก็ตาม สนามแม่เหล็กที่เกิดจากกระแสไฟฟ้าเป็น
เพียงส่วนหนึ่งของแถบความถี่ของคลื่นแม่เหล็กไฟฟ้าที่มีความ
แตกต่างกันอย่างมากเมื่อเทียบกับรังสีแกมมาซึ่งมีความถี่อยู่ในย่าน
การแผ่รังสีคลื่นแม่เหล็กไฟฟ้าที่ทำให้เกิดไอออน (Ionization
Radiation) [1] และสามารถทำลายการยึดเหนี่ยวของโมเลกุลได้

นั่นหมายความว่ารังสีแกมมาและการแผ่รังสีคลื่นแม่เหล็กไฟฟ้าที่ทำให้เกิดไอออนสามารถ
ทำลายส่วนต่างๆ ของดีเอ็นเอ (DNA) และการได้รับรังสีชนิดนี้สามารถนำไปสู่โรคมะเร็งได้

         คลื่นแม่เหล็กไฟฟ้าที่มีแถบคลื่นความถี่ที่ต่ำลงมา ระดับพลังงานของคลื่นแม่เหล็ก
ไฟฟ้าก็จะมีค่าลดลง ตัวอย่างเช่น คลื่นไมโครเวฟ ซึ่งมีพลังงานไม่เพียงพอที่จะทำลาย
การยึดเหนี่ยวของโมเลกุลได้ อย่างไรก็ตามการได้รับการแผ่รังสีของคลื่นไมโครเวฟที่มีค่าสูง
โดยตรงสามารถทำให้เกิดความร้อนได้เช่นเดียวกับการทำให้อาหารสุกโดยใช้ เตาไมโครเวฟ

         สนามแม่เหล็กที่เกิดจากกระแสไฟฟ้า มีความถี่อยู่บนแถบคลื่นความถี่ของคลื่น
แม่เหล็กไฟฟ้าในย่านความถี่ต่ำมาก [2] สนามแม่เหล็กจากเครื่องใช้ไฟฟ้าและสายส่งไฟฟ้านั้น
มีระดับพลังงานของคลื่นแม่เหล็กไฟฟ้าน้อยมากๆ ซึ่งไม่เพียงพอที่จะทำลายการยึดเหนี่ยว
ของโมเลกุลได้

         แต่อย่างไรก็ดี เซลล์ร่างกายคนเราสามารถตอบสนองกับสนามแม่เหล็กไฟฟ้าที่มี
พลังงานต่ำด้วย ในกรณีที่ขนาดของสนามแม่เหล็กไฟฟ้านั้นมีค่าสูง ซึ่งปฏิกิริยาเหล่านี้
จะเป็นปฏิกิริยาทางอ้อม (ผลกระทบทางกายภาพ) โดยยังไม่มีหลักฐานที่แสดงให้เห็นว่า
ผลกระทบทางอ้อมนี้จะก่อให้เกิดปัญหาเกี่ยวกับสุขภาพ

[1] Ionization Radiation คือ การแผ่รังสีคลื่นแม่เหล็กไฟฟ้าที่ทำให้เกิดการแตกตัวของอะตอมหรือกลุ่มของอะตอมที่มีประจุบวกและลบ
     โดยขึ้นอยู่กับการได้หรือสูญเสียอิเล็กตรอน
[2] ย่านความถี่ต่ำมาก (Extremely Low Frequency : ELF) มีความถี่อยู่ในช่วง 3 Hz ถึง 3,000 Hz (3 kHz) สำหรับประเทศไทยใช้ความถี่
    ในการส่งกระแสไฟฟ้าที่ 50 Hz

 
<<ย้อนกลับ  ::   ถัดไป>>

กองวิจัยและพัฒนา  ฝ่ายวิจัยและพัฒนา  การไฟฟ้านครหลวง  -  มกราคม 2549

Copyright © 2006 Metropolitan Electricity Authority (MEA). All rights reserved

 

  การเรียนการสอนฟิสิกส์ 2  ผ่านทางอินเตอร์เน็ต  

1. ไฟฟ้าสถิต 2.  สนามไฟฟ้า
3. ความกว้างของสายฟ้า  4.  ตัวเก็บประจุและการต่อตัวต้านทาน 
5. ศักย์ไฟฟ้า 6. กระแสไฟฟ้า 
7. สนามแม่เหล็ก  8.การเหนี่ยวนำ
9. ไฟฟ้ากระแสสลับ  10. ทรานซิสเตอร์ 
11. สนามแม่เหล็กไฟฟ้าและเสาอากาศ 

12. แสงและการมองเห็น

13. ทฤษฎีสัมพัทธภาพ 14. กลศาสตร์ควอนตัม
15. โครงสร้างของอะตอม 16. นิวเคลียร์

 

กลับสู่หน้าแรกของโฮมเพจฟิสิกส์ราชมงคล

 

 

ครั้งที่

เซ็นสมุดเยี่ยม

การเรียนฟิสิกส์ 2 ผ่านทางอินเตอร์เน็ต